Sanil Shanker KP/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4), 2016, 1960-1961

An Algorithm to Transpose Zero- One Matrix

Sanil Shanker KP Dept. of Computer Science Farook College, Kozhikode, India.

Abstract- This paper puts forward a method to transpose Zero- One matrix. Here, we combine the logical AND and logical OR operations to achieve the result.

Keywords: Zero-One Matrix, Matrix transpose

I. INTRODUCTION

In 2010, Sanil et al designed an algorithm for sequential data mining using correlation matrix memory [1]. We renovate the algorithm to transpose Zero- One matrix. A matrix with entities that are either zero or one is called a Zero- One matrix. The transpose of a matrix is obtained by interchanging the rows and columns.

Let M be a Zero- One matrix of size p x q. The transpose of M, denoted by M^T , is the q x p matrix obtained by interchanging the rows and columns of M. Boolean arithmetic is based on Boolean operations \vee or \wedge which operates on pair of bits [2]. In this proposed method, we compute M^T by combining the characteristics of logical AND with logical OR operations.

II. ALGORITHM

In this method, the input binary matrix M of order p x q operates logical AND with reference matrix $D_{(i,j)}$, gives M^T with the cell values W_{ij} .

Step 1. Initialize the matrix M of order p x q.

Step 2. Create the reference matrix $D_{(i, j)}$, where

$$i=1,2...p$$
 and $j=1,2,...q$.

Step 3. Compute M^T with cell values

$$\sum_{i=1}^{p} W_{ij}$$
 , where $j = 1, 2, \dots, q$

$$M^1 \leftarrow M \cdot D_{(i,j)}$$

Example

Consider the matrix of order $p \ge q$, where p = 3 and q = 6.

1	0	1	1	0	1
0	0	0	0	0	0
0	1	0	0	1	0

Let the reference matrix D(i,j) be

1	0	0
0	1	0
0	0	1

The input binary matrix M of order p x q operates logical AND with reference matrix $D_{(i, j)}$ gives M^T with the cell values W_{ij} .

1	0	1	1	0	1	٨	1	0	0
0	0	0	0	0	0	Λ	0	1	0
0	1	0	0	1	0	Λ	0	0	1
Logical AND									

The value of W_{11} can be computed as,

$$M^{T} \leftarrow M \cdot D_{(i,j)}$$

This gives the transpose of the Zero- One matrix M of size p x q as the output, that is M^{T} with order q x p (q = 6, p = 3)

1	0	0
0	0	1
1	0	0
1	0	0
0	0	1
1	0	0

III SUMMARY

A novel algorithm to transpose Zero- One matrix has been described in the paper. This technique can possibly be implemented to develop a way of research in Computational Science.

REFERENCES

- [1] Sanil Shanker K P, Aaron Turner, Elizabeth Sherly and Jim Austin, Sequential Data Mining Using Correlation Matrix Memory. International Conference on Networking and Information Technology (ICNIT), 2010, Manila, IEEE Xplore, (June 2010) 470- 472.
- [2] Stephen Warshall, *A Theorem on Boolean Matrices*. Journal of the ACM. Volume 9 Issue 1, Jan. 1962 Pages 11-12.