An Algorithm to Transpose Zero- One Matrix

Sanil Shanker KP
Dept. of Computer Science
Farook College,
Kozhikode, India.

Abstract

This paper puts forward a method to transpose Zero- One matrix. Here, we combine the logical AND and logical OR operations to achieve the result.

Keywords: Zero-One Matrix, Matrix transpose

I. Introduction

In 2010, Sanil et al designed an algorithm for sequential data mining using correlation matrix memory [1]. We renovate the algorithm to transpose Zero- One matrix. A matrix with entities that are either zero or one is called a Zero- One matrix. The transpose of a matrix is obtained by interchanging the rows and columns.

Let M be a Zero- One matrix of size $p \mathrm{xq}$. The transpose of M, denoted by M^{T}, is the $q \times p$ matrix obtained by interchanging the rows and columns of M . Boolean arithmetic is based on Boolean operations \vee or \wedge which operates on pair of bits [2]. In this proposed method, we compute M^{T} by combining the characteristics of logical AND with logical OR operations.

II. Algorithm

In this method, the input binary matrix M of order $\mathrm{p} \times \mathrm{q}$ operates logical AND with reference matrix $D_{(i, j)}$, gives M^{T} with the cell values W_{ij}.

Step 1. Initialize the matrix M of order p xq .
Step 2. Create the reference matrix $\mathrm{D}_{(\mathrm{i}, \mathrm{j}}$, where

$$
\mathrm{i}=1,2 \ldots \mathrm{p} \text { and } \mathrm{j}=1,2, \ldots \mathrm{q} .
$$

Step 3. Compute M^{T} with cell values

$$
\begin{aligned}
& \left.\sum_{i=1}^{p} \mathrm{~W}_{1, i}, \text { where }\right)=1,2, \ldots \mathrm{q} \\
& \mathrm{M}^{\mathrm{T}} \leftarrow \mathrm{M} \cdot \mathrm{D}_{(\mathrm{i}, \mathrm{j})}
\end{aligned}
$$

Example

Consider the matrix of order pxq , where $\mathrm{p}=3$ and $\mathrm{q}=6$.

1	0	1	1	0	1
0	0	0	0	0	0
0	1	0	0	1	0

Let the reference matrix $D(i, j)$ be

1	0	0
0	1	0
0	0	1

The input binary matrix M of order px q operates logical AND with reference matrix $\mathrm{D}_{(\mathrm{i}, \mathrm{j})}$ gives M^{T} with the cell values W_{ij}.

1	0	1	1	0	1
0	0	0	0	0	0
	\wedge				
\wedge	1	0	0	1	0
\wedge					

The value of $W_{i f}$ can be computed as,

$$
\mathrm{M}^{\mathrm{T}} \leftarrow \mathrm{M} \cdot \mathrm{D}_{(\mathrm{i}, \mathrm{j})}
$$

This gives the transpose of the Zero- One matrix M of size p xq as the output, that is M^{T} with order $\mathrm{q} \times \mathrm{p}(\mathrm{q}=6, \mathrm{p}=3)$

1	0	0
0	0	1
1	0	0
1	0	0
0	0	1
1	0	0

III Summary

A novel algorithm to transpose Zero- One matrix has been described in the paper. This technique can possibly be implemented to develop a way of research in Computational Science.

References

[1] Sanil Shanker K P, Aaron Turner, Elizabeth Sherly and Jim Austin, Sequential Data Mining Using Correlation Matrix Memory. International Conference on Networking and Information Technology (ICNIT), 2010, Manila, IEEE Xplore, (June 2010) 470-472.
[2] Stephen Warshall, A Theorem on Boolean Matrices. Journal of the ACM. Volume 9 Issue 1, Jan. 1962 Pages 11-12.

